extension | φ:Q→Out N | d | ρ | Label | ID |
(C22xDic5).1C22 = (C2xC20):Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).1C2^2 | 320,273 |
(C22xDic5).2C22 = C10.49(C4xD4) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).2C2^2 | 320,274 |
(C22xDic5).3C22 = C5:2(C42:8C4) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).3C2^2 | 320,277 |
(C22xDic5).4C22 = C2.(C4xD20) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).4C2^2 | 320,280 |
(C22xDic5).5C22 = C4:Dic5:15C4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).5C2^2 | 320,281 |
(C22xDic5).6C22 = (C2xDic5):Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).6C2^2 | 320,283 |
(C22xDic5).7C22 = C2.(C20:Q8) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).7C2^2 | 320,284 |
(C22xDic5).8C22 = (C2xDic5).Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).8C2^2 | 320,285 |
(C22xDic5).9C22 = (C2xC20).28D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).9C2^2 | 320,286 |
(C22xDic5).10C22 = (C2xC4).Dic10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).10C2^2 | 320,287 |
(C22xDic5).11C22 = C10.(C4:Q8) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).11C2^2 | 320,288 |
(C22xDic5).12C22 = (C22xC4).D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).12C2^2 | 320,289 |
(C22xDic5).13C22 = C22.58(D4xD5) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).13C2^2 | 320,291 |
(C22xDic5).14C22 = (C2xC4):9D20 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).14C2^2 | 320,292 |
(C22xDic5).15C22 = D10:2(C4:C4) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).15C2^2 | 320,294 |
(C22xDic5).16C22 = D10:3(C4:C4) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).16C2^2 | 320,295 |
(C22xDic5).17C22 = C10.54(C4xD4) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).17C2^2 | 320,296 |
(C22xDic5).18C22 = (C2xC20):5D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).18C2^2 | 320,298 |
(C22xDic5).19C22 = (C2xDic5):3D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).19C2^2 | 320,299 |
(C22xDic5).20C22 = (C2xC4).20D20 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).20C2^2 | 320,300 |
(C22xDic5).21C22 = (C2xC4).21D20 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).21C2^2 | 320,301 |
(C22xDic5).22C22 = C10.(C4:D4) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).22C2^2 | 320,302 |
(C22xDic5).23C22 = (C22xD5).Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).23C2^2 | 320,303 |
(C22xDic5).24C22 = (C2xC20).33D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).24C2^2 | 320,304 |
(C22xDic5).25C22 = C23:C4:5D5 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | 8- | (C2^2xDic5).25C2^2 | 320,367 |
(C22xDic5).26C22 = C20:7(C4:C4) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).26C2^2 | 320,555 |
(C22xDic5).27C22 = (C2xC20):10Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).27C2^2 | 320,556 |
(C22xDic5).28C22 = C10.92(C4xD4) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).28C2^2 | 320,560 |
(C22xDic5).29C22 = C42:8Dic5 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).29C2^2 | 320,562 |
(C22xDic5).30C22 = C42:9Dic5 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).30C2^2 | 320,563 |
(C22xDic5).31C22 = C42:5Dic5 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).31C2^2 | 320,564 |
(C22xDic5).32C22 = (C2xC4):6D20 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).32C2^2 | 320,566 |
(C22xDic5).33C22 = (C2xC42):D5 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).33C2^2 | 320,567 |
(C22xDic5).34C22 = C24.44D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).34C2^2 | 320,569 |
(C22xDic5).35C22 = C24.3D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).35C2^2 | 320,571 |
(C22xDic5).36C22 = C24.4D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).36C2^2 | 320,572 |
(C22xDic5).37C22 = C24.46D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).37C2^2 | 320,573 |
(C22xDic5).38C22 = C23:Dic10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).38C2^2 | 320,574 |
(C22xDic5).39C22 = C24.6D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).39C2^2 | 320,575 |
(C22xDic5).40C22 = C24.7D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).40C2^2 | 320,576 |
(C22xDic5).41C22 = C24.9D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).41C2^2 | 320,579 |
(C22xDic5).42C22 = C23.14D20 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).42C2^2 | 320,580 |
(C22xDic5).43C22 = C24.12D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).43C2^2 | 320,583 |
(C22xDic5).44C22 = C24.13D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).44C2^2 | 320,584 |
(C22xDic5).45C22 = C24.14D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).45C2^2 | 320,586 |
(C22xDic5).46C22 = C23:2D20 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).46C2^2 | 320,587 |
(C22xDic5).47C22 = C24.16D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).47C2^2 | 320,588 |
(C22xDic5).48C22 = C10.96(C4xD4) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).48C2^2 | 320,599 |
(C22xDic5).49C22 = C20:4(C4:C4) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).49C2^2 | 320,600 |
(C22xDic5).50C22 = (C2xDic5):6Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).50C2^2 | 320,601 |
(C22xDic5).51C22 = C10.97(C4xD4) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).51C2^2 | 320,605 |
(C22xDic5).52C22 = (C2xC4):Dic10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).52C2^2 | 320,606 |
(C22xDic5).53C22 = (C2xC20).287D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).53C2^2 | 320,607 |
(C22xDic5).54C22 = (C2xC20).288D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).54C2^2 | 320,609 |
(C22xDic5).55C22 = (C2xC20).53D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).55C2^2 | 320,610 |
(C22xDic5).56C22 = (C2xC20).54D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).56C2^2 | 320,611 |
(C22xDic5).57C22 = (C2xC20).55D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).57C2^2 | 320,613 |
(C22xDic5).58C22 = D10:4(C4:C4) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).58C2^2 | 320,614 |
(C22xDic5).59C22 = D10:5(C4:C4) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).59C2^2 | 320,616 |
(C22xDic5).60C22 = (C2xC4):3D20 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).60C2^2 | 320,618 |
(C22xDic5).61C22 = (C2xC20).289D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).61C2^2 | 320,619 |
(C22xDic5).62C22 = (C2xC20).290D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).62C2^2 | 320,620 |
(C22xDic5).63C22 = (C2xC20).56D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).63C2^2 | 320,621 |
(C22xDic5).64C22 = C24.62D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).64C2^2 | 320,837 |
(C22xDic5).65C22 = C24.63D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).65C2^2 | 320,838 |
(C22xDic5).66C22 = C24.64D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).66C2^2 | 320,839 |
(C22xDic5).67C22 = C24.65D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).67C2^2 | 320,840 |
(C22xDic5).68C22 = C24.20D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).68C2^2 | 320,849 |
(C22xDic5).69C22 = C24.21D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).69C2^2 | 320,850 |
(C22xDic5).70C22 = C10.C22wrC2 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).70C2^2 | 320,856 |
(C22xDic5).71C22 = (C22xD5):Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).71C2^2 | 320,858 |
(C22xDic5).72C22 = C2xC20:2Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).72C2^2 | 320,1140 |
(C22xDic5).73C22 = C2xC20.6Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).73C2^2 | 320,1141 |
(C22xDic5).74C22 = C2xC4.D20 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).74C2^2 | 320,1148 |
(C22xDic5).75C22 = C2xC42:2D5 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).75C2^2 | 320,1150 |
(C22xDic5).76C22 = C23:2Dic10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).76C2^2 | 320,1155 |
(C22xDic5).77C22 = C2xD10:D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).77C2^2 | 320,1161 |
(C22xDic5).78C22 = C24.27D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).78C2^2 | 320,1162 |
(C22xDic5).79C22 = C2xDic5.5D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).79C2^2 | 320,1163 |
(C22xDic5).80C22 = C24.31D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).80C2^2 | 320,1167 |
(C22xDic5).81C22 = C2xD10:Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).81C2^2 | 320,1180 |
(C22xDic5).82C22 = C2xD10:2Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).82C2^2 | 320,1181 |
(C22xDic5).83C22 = C2xC4:C4:D5 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).83C2^2 | 320,1184 |
(C22xDic5).84C22 = C42.87D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).84C2^2 | 320,1188 |
(C22xDic5).85C22 = C42.90D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).85C2^2 | 320,1191 |
(C22xDic5).86C22 = C42.91D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).86C2^2 | 320,1195 |
(C22xDic5).87C22 = C42.92D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).87C2^2 | 320,1198 |
(C22xDic5).88C22 = C42:10D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).88C2^2 | 320,1199 |
(C22xDic5).89C22 = C42.96D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).89C2^2 | 320,1203 |
(C22xDic5).90C22 = D4xDic10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).90C2^2 | 320,1209 |
(C22xDic5).91C22 = D4:5Dic10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).91C2^2 | 320,1211 |
(C22xDic5).92C22 = C42.104D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).92C2^2 | 320,1212 |
(C22xDic5).93C22 = C42.105D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).93C2^2 | 320,1213 |
(C22xDic5).94C22 = D4:6Dic10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).94C2^2 | 320,1215 |
(C22xDic5).95C22 = C42.108D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).95C2^2 | 320,1218 |
(C22xDic5).96C22 = Dic10:23D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).96C2^2 | 320,1224 |
(C22xDic5).97C22 = D4:6D20 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).97C2^2 | 320,1227 |
(C22xDic5).98C22 = C42:16D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).98C2^2 | 320,1228 |
(C22xDic5).99C22 = C42:17D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).99C2^2 | 320,1232 |
(C22xDic5).100C22 = C42.118D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).100C2^2 | 320,1236 |
(C22xDic5).101C22 = C42.119D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).101C2^2 | 320,1237 |
(C22xDic5).102C22 = C10.682- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).102C2^2 | 320,1269 |
(C22xDic5).103C22 = Dic10:19D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).103C2^2 | 320,1270 |
(C22xDic5).104C22 = Dic10:20D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).104C2^2 | 320,1271 |
(C22xDic5).105C22 = C4:C4.178D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).105C2^2 | 320,1272 |
(C22xDic5).106C22 = C10.342+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).106C2^2 | 320,1273 |
(C22xDic5).107C22 = C10.352+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).107C2^2 | 320,1274 |
(C22xDic5).108C22 = C10.362+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).108C2^2 | 320,1275 |
(C22xDic5).109C22 = C10.392+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).109C2^2 | 320,1280 |
(C22xDic5).110C22 = C10.732- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).110C2^2 | 320,1283 |
(C22xDic5).111C22 = C10.432+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).111C2^2 | 320,1286 |
(C22xDic5).112C22 = C10.442+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).112C2^2 | 320,1287 |
(C22xDic5).113C22 = C10.452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).113C2^2 | 320,1288 |
(C22xDic5).114C22 = C10.1152+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).114C2^2 | 320,1290 |
(C22xDic5).115C22 = C10.472+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).115C2^2 | 320,1291 |
(C22xDic5).116C22 = C10.742- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).116C2^2 | 320,1293 |
(C22xDic5).117C22 = C10.502+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).117C2^2 | 320,1295 |
(C22xDic5).118C22 = Dic10:21D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).118C2^2 | 320,1304 |
(C22xDic5).119C22 = C10.512+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).119C2^2 | 320,1306 |
(C22xDic5).120C22 = C10.1182+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).120C2^2 | 320,1307 |
(C22xDic5).121C22 = C10.522+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).121C2^2 | 320,1308 |
(C22xDic5).122C22 = C10.532+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).122C2^2 | 320,1309 |
(C22xDic5).123C22 = C10.772- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).123C2^2 | 320,1314 |
(C22xDic5).124C22 = C10.562+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).124C2^2 | 320,1316 |
(C22xDic5).125C22 = C10.572+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).125C2^2 | 320,1317 |
(C22xDic5).126C22 = C10.792- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).126C2^2 | 320,1320 |
(C22xDic5).127C22 = C10.802- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).127C2^2 | 320,1322 |
(C22xDic5).128C22 = C10.812- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).128C2^2 | 320,1323 |
(C22xDic5).129C22 = C10.822- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).129C2^2 | 320,1327 |
(C22xDic5).130C22 = C10.632+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).130C2^2 | 320,1332 |
(C22xDic5).131C22 = C10.642+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).131C2^2 | 320,1333 |
(C22xDic5).132C22 = C10.842- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).132C2^2 | 320,1334 |
(C22xDic5).133C22 = C10.662+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).133C2^2 | 320,1335 |
(C22xDic5).134C22 = C10.672+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).134C2^2 | 320,1336 |
(C22xDic5).135C22 = C10.852- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).135C2^2 | 320,1337 |
(C22xDic5).136C22 = C10.692+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).136C2^2 | 320,1339 |
(C22xDic5).137C22 = C42.233D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).137C2^2 | 320,1340 |
(C22xDic5).138C22 = C42.137D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).138C2^2 | 320,1341 |
(C22xDic5).139C22 = C42.138D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).139C2^2 | 320,1342 |
(C22xDic5).140C22 = C42.139D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).140C2^2 | 320,1343 |
(C22xDic5).141C22 = C42.140D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).141C2^2 | 320,1344 |
(C22xDic5).142C22 = C42.141D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).142C2^2 | 320,1347 |
(C22xDic5).143C22 = Dic10:10D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).143C2^2 | 320,1349 |
(C22xDic5).144C22 = C42.234D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).144C2^2 | 320,1352 |
(C22xDic5).145C22 = C42.143D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).145C2^2 | 320,1353 |
(C22xDic5).146C22 = C42.144D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).146C2^2 | 320,1354 |
(C22xDic5).147C22 = C42.145D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).147C2^2 | 320,1356 |
(C22xDic5).148C22 = C42.159D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).148C2^2 | 320,1373 |
(C22xDic5).149C22 = C42.160D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).149C2^2 | 320,1374 |
(C22xDic5).150C22 = C42.189D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).150C2^2 | 320,1378 |
(C22xDic5).151C22 = C42.161D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).151C2^2 | 320,1379 |
(C22xDic5).152C22 = C42.162D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).152C2^2 | 320,1380 |
(C22xDic5).153C22 = C42.163D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).153C2^2 | 320,1381 |
(C22xDic5).154C22 = C42.164D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).154C2^2 | 320,1382 |
(C22xDic5).155C22 = C42.165D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).155C2^2 | 320,1384 |
(C22xDic5).156C22 = C42.166D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).156C2^2 | 320,1385 |
(C22xDic5).157C22 = C42.238D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).157C2^2 | 320,1388 |
(C22xDic5).158C22 = Dic10:11D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).158C2^2 | 320,1390 |
(C22xDic5).159C22 = C42.168D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).159C2^2 | 320,1391 |
(C22xDic5).160C22 = C2xC20.48D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).160C2^2 | 320,1456 |
(C22xDic5).161C22 = C2xC23.23D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).161C2^2 | 320,1461 |
(C22xDic5).162C22 = C2xC20:7D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).162C2^2 | 320,1462 |
(C22xDic5).163C22 = C2xC20:2D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).163C2^2 | 320,1472 |
(C22xDic5).164C22 = C2xD10:3Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).164C2^2 | 320,1485 |
(C22xDic5).165C22 = C10.1042- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).165C2^2 | 320,1496 |
(C22xDic5).166C22 = C10.1052- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).166C2^2 | 320,1497 |
(C22xDic5).167C22 = C10.1062- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).167C2^2 | 320,1499 |
(C22xDic5).168C22 = C10.1472+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).168C2^2 | 320,1505 |
(C22xDic5).169C22 = C2xD4.10D10 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).169C2^2 | 320,1620 |
(C22xDic5).170C22 = C22:C4.F5 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | 8- | (C2^2xDic5).170C2^2 | 320,205 |
(C22xDic5).171C22 = (C2xC20):1C8 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).171C2^2 | 320,251 |
(C22xDic5).172C22 = (C22xC4).F5 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).172C2^2 | 320,252 |
(C22xDic5).173C22 = C5:(C23:C8) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).173C2^2 | 320,253 |
(C22xDic5).174C22 = C22.F5:C4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).174C2^2 | 320,257 |
(C22xDic5).175C22 = C24.F5 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).175C2^2 | 320,271 |
(C22xDic5).176C22 = Dic5.C42 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).176C2^2 | 320,1029 |
(C22xDic5).177C22 = C5:C8:8D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).177C2^2 | 320,1030 |
(C22xDic5).178C22 = C5:C8:D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).178C2^2 | 320,1031 |
(C22xDic5).179C22 = D10:M4(2) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).179C2^2 | 320,1032 |
(C22xDic5).180C22 = Dic5:M4(2) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).180C2^2 | 320,1033 |
(C22xDic5).181C22 = C20:C8:C2 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).181C2^2 | 320,1034 |
(C22xDic5).182C22 = C23.(C2xF5) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).182C2^2 | 320,1035 |
(C22xDic5).183C22 = C2xDic5.D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).183C2^2 | 320,1098 |
(C22xDic5).184C22 = D4xC5:C8 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).184C2^2 | 320,1110 |
(C22xDic5).185C22 = C5:C8:7D4 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).185C2^2 | 320,1111 |
(C22xDic5).186C22 = C20:2M4(2) | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).186C2^2 | 320,1112 |
(C22xDic5).187C22 = (C2xD4).7F5 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).187C2^2 | 320,1113 |
(C22xDic5).188C22 = (C2xD4).8F5 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).188C2^2 | 320,1114 |
(C22xDic5).189C22 = (C2xD4).9F5 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | 8- | (C2^2xDic5).189C2^2 | 320,1115 |
(C22xDic5).190C22 = C2xC23.F5 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).190C2^2 | 320,1137 |
(C22xDic5).191C22 = C2xD4.F5 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).191C2^2 | 320,1593 |
(C22xDic5).192C22 = Dic5.C24 | φ: C22/C1 → C22 ⊆ Out C22xDic5 | 80 | 8- | (C2^2xDic5).192C2^2 | 320,1594 |
(C22xDic5).193C22 = Dic5.15C42 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).193C2^2 | 320,275 |
(C22xDic5).194C22 = Dic5:2C42 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).194C2^2 | 320,276 |
(C22xDic5).195C22 = C5:2(C42:5C4) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).195C2^2 | 320,278 |
(C22xDic5).196C22 = C10.51(C4xD4) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).196C2^2 | 320,279 |
(C22xDic5).197C22 = C10.52(C4xD4) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).197C2^2 | 320,282 |
(C22xDic5).198C22 = D5xC2.C42 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).198C2^2 | 320,290 |
(C22xDic5).199C22 = D10:2C42 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).199C2^2 | 320,293 |
(C22xDic5).200C22 = C10.55(C4xD4) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).200C2^2 | 320,297 |
(C22xDic5).201C22 = C4xC10.D4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).201C2^2 | 320,558 |
(C22xDic5).202C22 = C42:4Dic5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).202C2^2 | 320,559 |
(C22xDic5).203C22 = C4xC4:Dic5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).203C2^2 | 320,561 |
(C22xDic5).204C22 = C4xD10:C4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).204C2^2 | 320,565 |
(C22xDic5).205C22 = C22:C4xDic5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).205C2^2 | 320,568 |
(C22xDic5).206C22 = C23.42D20 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).206C2^2 | 320,570 |
(C22xDic5).207C22 = C24.47D10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).207C2^2 | 320,577 |
(C22xDic5).208C22 = C24.8D10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).208C2^2 | 320,578 |
(C22xDic5).209C22 = C23.45D20 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).209C2^2 | 320,585 |
(C22xDic5).210C22 = C4:C4xDic5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).210C2^2 | 320,602 |
(C22xDic5).211C22 = C20:5(C4:C4) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).211C2^2 | 320,603 |
(C22xDic5).212C22 = C20.48(C4:C4) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).212C2^2 | 320,604 |
(C22xDic5).213C22 = C4:C4:5Dic5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).213C2^2 | 320,608 |
(C22xDic5).214C22 = C20:6(C4:C4) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).214C2^2 | 320,612 |
(C22xDic5).215C22 = (C2xD20):22C4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).215C2^2 | 320,615 |
(C22xDic5).216C22 = C10.90(C4xD4) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).216C2^2 | 320,617 |
(C22xDic5).217C22 = C2xC10.10C42 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).217C2^2 | 320,835 |
(C22xDic5).218C22 = C4xC23.D5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).218C2^2 | 320,836 |
(C22xDic5).219C22 = C24.18D10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).219C2^2 | 320,847 |
(C22xDic5).220C22 = C24.19D10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).220C2^2 | 320,848 |
(C22xDic5).221C22 = (Q8xC10):17C4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).221C2^2 | 320,857 |
(C22xDic5).222C22 = C2xC4xDic10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).222C2^2 | 320,1139 |
(C22xDic5).223C22 = C2xC42:D5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).223C2^2 | 320,1144 |
(C22xDic5).224C22 = C2xC4xD20 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).224C2^2 | 320,1145 |
(C22xDic5).225C22 = C2xDic5.14D4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).225C2^2 | 320,1153 |
(C22xDic5).226C22 = C2xC23.D10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).226C2^2 | 320,1154 |
(C22xDic5).227C22 = C2xD10.12D4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).227C2^2 | 320,1160 |
(C22xDic5).228C22 = C2xDic5:3Q8 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).228C2^2 | 320,1168 |
(C22xDic5).229C22 = C2xC20:Q8 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).229C2^2 | 320,1169 |
(C22xDic5).230C22 = C2xDic5.Q8 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).230C2^2 | 320,1170 |
(C22xDic5).231C22 = C2xC4.Dic10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).231C2^2 | 320,1171 |
(C22xDic5).232C22 = C2xD5xC4:C4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).232C2^2 | 320,1173 |
(C22xDic5).233C22 = C2xC4:C4:7D5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).233C2^2 | 320,1174 |
(C22xDic5).234C22 = C2xD20:8C4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).234C2^2 | 320,1175 |
(C22xDic5).235C22 = C2xD10.13D4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).235C2^2 | 320,1177 |
(C22xDic5).236C22 = C2xC4:D20 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).236C2^2 | 320,1178 |
(C22xDic5).237C22 = C42.88D10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).237C2^2 | 320,1189 |
(C22xDic5).238C22 = D5xC42:C2 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).238C2^2 | 320,1192 |
(C22xDic5).239C22 = C42.188D10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).239C2^2 | 320,1194 |
(C22xDic5).240C22 = C42:8D10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).240C2^2 | 320,1196 |
(C22xDic5).241C22 = C4xD4:2D5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).241C2^2 | 320,1208 |
(C22xDic5).242C22 = C42.102D10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).242C2^2 | 320,1210 |
(C22xDic5).243C22 = C42:12D10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).243C2^2 | 320,1219 |
(C22xDic5).244C22 = C20:(C4oD4) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).244C2^2 | 320,1268 |
(C22xDic5).245C22 = (Q8xDic5):C2 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).245C2^2 | 320,1294 |
(C22xDic5).246C22 = C22:Q8:25D5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).246C2^2 | 320,1296 |
(C22xDic5).247C22 = D5xC22:Q8 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).247C2^2 | 320,1298 |
(C22xDic5).248C22 = C4:C4:26D10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).248C2^2 | 320,1299 |
(C22xDic5).249C22 = C4:C4.197D10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).249C2^2 | 320,1321 |
(C22xDic5).250C22 = C22xC10.D4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).250C2^2 | 320,1455 |
(C22xDic5).251C22 = C22xC4:Dic5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).251C2^2 | 320,1457 |
(C22xDic5).252C22 = C2xC23.21D10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).252C2^2 | 320,1458 |
(C22xDic5).253C22 = C2xC4xC5:D4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).253C2^2 | 320,1460 |
(C22xDic5).254C22 = C2xC20.17D4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).254C2^2 | 320,1469 |
(C22xDic5).255C22 = C2xC20:D4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).255C2^2 | 320,1475 |
(C22xDic5).256C22 = C2xDic5:Q8 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).256C2^2 | 320,1482 |
(C22xDic5).257C22 = C2xC20.23D4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).257C2^2 | 320,1486 |
(C22xDic5).258C22 = C4oD4xDic5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).258C2^2 | 320,1498 |
(C22xDic5).259C22 = (C2xC20):15D4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).259C2^2 | 320,1500 |
(C22xDic5).260C22 = (C2xC20):17D4 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).260C2^2 | 320,1504 |
(C22xDic5).261C22 = C23xDic10 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).261C2^2 | 320,1608 |
(C22xDic5).262C22 = C22xC4oD20 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).262C2^2 | 320,1611 |
(C22xDic5).263C22 = C22xQ8xD5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).263C2^2 | 320,1615 |
(C22xDic5).264C22 = C10.(C4:C8) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).264C2^2 | 320,256 |
(C22xDic5).265C22 = C2xC4xC5:C8 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).265C2^2 | 320,1084 |
(C22xDic5).266C22 = C2xC20:C8 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).266C2^2 | 320,1085 |
(C22xDic5).267C22 = Dic5.12M4(2) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).267C2^2 | 320,1086 |
(C22xDic5).268C22 = C2xC10.C42 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).268C2^2 | 320,1087 |
(C22xDic5).269C22 = C4xC22.F5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).269C2^2 | 320,1088 |
(C22xDic5).270C22 = C2xD10:C8 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).270C2^2 | 320,1089 |
(C22xDic5).271C22 = C2xDic5:C8 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).271C2^2 | 320,1090 |
(C22xDic5).272C22 = D10.11M4(2) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).272C2^2 | 320,1091 |
(C22xDic5).273C22 = C20.34M4(2) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).273C2^2 | 320,1092 |
(C22xDic5).274C22 = D10:9M4(2) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).274C2^2 | 320,1093 |
(C22xDic5).275C22 = D10:10M4(2) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).275C2^2 | 320,1094 |
(C22xDic5).276C22 = Dic5.13M4(2) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).276C2^2 | 320,1095 |
(C22xDic5).277C22 = C20:8M4(2) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).277C2^2 | 320,1096 |
(C22xDic5).278C22 = C20.30M4(2) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).278C2^2 | 320,1097 |
(C22xDic5).279C22 = C2xC23.2F5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).279C2^2 | 320,1135 |
(C22xDic5).280C22 = C24.4F5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).280C2^2 | 320,1136 |
(C22xDic5).281C22 = C22xD5:C8 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).281C2^2 | 320,1587 |
(C22xDic5).282C22 = C22xC4.F5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).282C2^2 | 320,1588 |
(C22xDic5).283C22 = C2xD5:M4(2) | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).283C2^2 | 320,1589 |
(C22xDic5).284C22 = C23xC5:C8 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).284C2^2 | 320,1605 |
(C22xDic5).285C22 = C22xC22.F5 | φ: C22/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).285C2^2 | 320,1606 |
(C22xDic5).286C22 = C42xDic5 | φ: trivial image | 320 | | (C2^2xDic5).286C2^2 | 320,557 |
(C22xDic5).287C22 = D5xC2xC42 | φ: trivial image | 160 | | (C2^2xDic5).287C2^2 | 320,1143 |
(C22xDic5).288C22 = C2xC23.11D10 | φ: trivial image | 160 | | (C2^2xDic5).288C2^2 | 320,1152 |
(C22xDic5).289C22 = C22xC4xDic5 | φ: trivial image | 320 | | (C2^2xDic5).289C2^2 | 320,1454 |
(C22xDic5).290C22 = C2xQ8xDic5 | φ: trivial image | 320 | | (C2^2xDic5).290C2^2 | 320,1483 |
(C22xDic5).291C22 = C22xQ8:2D5 | φ: trivial image | 160 | | (C2^2xDic5).291C2^2 | 320,1616 |